Rememberizer Docs
Iniciar sesiónInscribirseContáctenos
Español
Español
  • ¿Por qué Rememberizer?
  • Antecedentes
    • ¿Qué son los Embeddings Vectoriales y las Bases de Datos Vectoriales?
    • Glosario
    • Terminología Estandarizada
  • Uso Personal
    • Comenzando
      • Buscar tu conocimiento
      • Acceso al Filtro de Mementos
      • Conocimiento Común
      • Gestiona tu conocimiento incrustado
  • Integraciones
    • Aplicación Rememberizer
    • Integración de Rememberizer con Slack
    • Integración de Rememberizer con Google Drive
    • Integración de Rememberizer con Dropbox
    • Integración de Rememberizer con Gmail
    • Integración de Rememberizer con Memory
    • Servidores MCP de Rememberizer
    • Gestionar aplicaciones de terceros
  • Recursos para Desarrolladores
    • Descripción General del Desarrollador
  • Opciones de Integración
    • Registrar y usar claves API
    • Registrar aplicaciones de Rememberizer
    • Autorizar aplicaciones de Rememberizer
    • Crear un Rememberizer GPT
    • Integración de LangChain
    • Almacenes de Vectores
    • Hablar con Slack la Aplicación Web de Ejemplo
  • Integración Empresarial
    • Patrones de Integración Empresarial
  • Referencia de la API
    • Inicio de la Documentación de la API
    • Autenticación
  • APIs principales
    • Buscar documentos por similitud semántica
    • Recuperar documentos
    • Recuperar contenidos de documentos
    • Recuperar contenido de Slack
    • Memorizar contenido en Rememberizer
  • Cuenta y Configuración
    • Recuperar detalles de la cuenta de usuario actual
    • Listar integraciones de fuentes de datos disponibles
    • Mementos
    • Obtener todo el conocimiento público agregado
  • APIs de Almacenamiento de Vectores
    • Documentación del Almacenamiento de Vectores
    • Obtener información del almacenamiento de vectores
    • Obtener una lista de documentos en un Almacenamiento de Vectores
    • Obtener información del documento
    • Agregar un nuevo documento de texto a un Almacenamiento de Vectores
    • Subir archivos a un Almacenamiento de Vectores
    • Actualizar el contenido del archivo en un Almacenamiento de Vectores
    • Eliminar un documento en el Almacenamiento de Vectores
    • Buscar documentos del Almacenamiento de Vectores por similitud semántica
  • Recursos Adicionales
    • Avisos
      • Términos de Uso
      • Política de Privacidad
      • B2B
        • Acerca de Reddit Agent
  • Lanzamientos
    • Notas de la versión Inicio
  • Lanzamientos 2025
    • 25 de abr, 2025
    • 18 de abr, 2025
    • 11 de abr, 2025
    • 4 de abr, 2025
    • 28 de mar, 2025
    • 21 de mar, 2025
    • 14 de mar, 2025
    • 17 de ene, 2025
  • Lanzamientos 2024
    • 27 de diciembre de 2024
    • 20 de diciembre de 2024
    • 13 de diciembre de 2024
    • 6 de diciembre de 2024
  • 29 de Noviembre de 2024
  • 22 de Noviembre de 2024
  • 15 de Noviembre de 2024
  • 8 de Noviembre de 2024
  • 1 de Noviembre de 2024
  • 25 de oct, 2024
  • 18 de oct, 2024
  • 11 de oct, 2024
  • 4 de oct, 2024
  • 27 de sep, 2024
  • 20 de sep, 2024
  • 13 de sep, 2024
  • 16 de agosto de 2024
  • 9 de agosto de 2024
  • 2 de agosto de 2024
  • 26 de julio de 2024
  • 12 de julio de 2024
  • 28 de jun, 2024
  • 14 de jun, 2024
  • 31 de mayo de 2024
  • 17 de mayo de 2024
  • 10 de mayo de 2024
  • 26 de abr, 2024
  • 19 de abr, 2024
  • 12 de abr, 2024
  • 5 de abr, 2024
  • 25 de mar, 2024
  • 18 de mar, 2024
  • 11 de mar, 2024
  • 4 de mar, 2024
  • 26 de Febrero de 2024
  • 19 de Febrero de 2024
  • 12 de Febrero de 2024
  • 5 de Febrero de 2024
  • 29 de enero de 2024
  • 22 de enero de 2024
  • 15 de enero de 2024
  • Documentación LLM
    • Documentación Lista para LLM de Rememberizer
Powered by GitBook
On this page
  • Nuevas Características
  • Mejoras
  • Corrección de errores
  1. Lanzamientos 2025

18 de abr, 2025

Esta versión se centra en mejorar la frescura de los datos, las mejoras en la API de cuentas, la gestión de notificaciones y en proporcionar documentación mejorada.

Nuevas Características

  • Seguimiento de Trabajadores de Embedding: Se introdujeron capacidades de monitoreo para el trabajador de embedding para mejorar el rendimiento y la fiabilidad.

  • Documentación Mejorada: Se proporcionó documentación actualizada tanto para usuarios humanos como para asistentes de IA para una mejor orientación.

Mejoras

  • Mejora de la Actualización de Datos: Se implementaron tiempos de espera en la caché para asegurar que los usuarios reciban la información más actualizada.

  • Notificaciones Optimizadas: Se ajustaron los ajustes de alerta para prevenir notificaciones duplicadas y mejorar la experiencia del usuario.

Corrección de errores

  • Corrección de la API de cuenta: Se resolvió un problema donde la API de cuenta no devolvía la descripción correcta de CK al utilizar la clave API de CK.

Previous25 de abr, 2025Next11 de abr, 2025

Last updated 22 days ago