Rememberizer Docs
Se connecterS'inscrireContactez-nous
Français
Français
  • Pourquoi Rememberizer ?
  • Contexte
    • Qu'est-ce que les embeddings vectoriels et les bases de données vectorielles ?
    • Glossaire
    • Terminologie standardisée
  • Utilisation personnelle
    • Commencer
      • Rechercher vos connaissances
      • Accès au filtre de souvenirs
      • Connaissances communes
      • Gérer vos connaissances intégrées
  • Intégrations
    • Application Rememberizer
    • Intégration Rememberizer Slack
    • Intégration Rememberizer Google Drive
    • Intégration Rememberizer Dropbox
    • Intégration Rememberizer Gmail
    • Intégration Rememberizer Memory
    • Serveurs MCP Rememberizer
    • Gérer les applications tierces
  • Ressources pour les développeurs
    • Aperçu des développeurs
  • Options d'intégration
    • Enregistrement et utilisation des clés API
    • Enregistrement des applications Rememberizer
    • Autorisation des applications Rememberizer
    • Création d'un GPT Rememberizer
    • Intégration LangChain
    • Magasins de vecteurs
    • Talk-to-Slack l'application Web d'exemple
  • Intégration d'entreprise
    • Modèles d'intégration d'entreprise
  • Référence API
    • Accueil de la documentation API
    • Authentification
  • APIs principales
    • Rechercher des documents par similarité sémantique
    • Récupérer des documents
    • Récupérer le contenu des documents
    • Récupérer le contenu Slack
    • Mémoriser le contenu dans Rememberizer
  • Compte & Configuration
    • Récupérer les détails du compte utilisateur actuel
    • Lister les intégrations de sources de données disponibles
    • Mementos
    • Obtenir toutes les connaissances publiques ajoutées
  • APIs de stockage vectoriel
    • Documentation sur le stockage vectoriel
    • Obtenir des informations sur le stockage vectoriel
    • Obtenir une liste de documents dans un stockage vectoriel
    • Obtenir des informations sur un document
    • Ajouter un nouveau document texte à un stockage vectoriel
    • Télécharger des fichiers dans un stockage vectoriel
    • Mettre à jour le contenu d'un fichier dans un stockage vectoriel
    • Supprimer un document dans le stockage vectoriel
    • Rechercher des documents de stockage vectoriel par similarité sémantique
  • Ressources supplémentaires
    • Avis
      • Conditions d'utilisation
      • Politique de confidentialité
      • B2B
        • À propos de Reddit Agent
  • Versions
    • Notes de version Accueil
  • Sorties 2025
    • 25 avr. 2025
    • 18 avr. 2025
    • 11 avr. 2025
    • 4 avr. 2025
    • 28 mar. 2025
    • 21 mar. 2025
    • 14 mar. 2025
    • 17 janv. 2025
  • Sorties 2024
    • 27 déc. 2024
    • 20 déc. 2024
    • 13 déc. 2024
    • 6 déc. 2024
  • 29 nov. 2024
  • 22 nov. 2024
  • 15 nov. 2024
  • 8 nov. 2024
  • 1er nov. 2024
  • 25 oct. 2024
  • 18 oct. 2024
  • 11 oct. 2024
  • 4 oct. 2024
  • 27 sept. 2024
  • 20 sept. 2024
  • 13 sept. 2024
  • 16 août 2024
  • 9 août 2024
  • 2 août 2024
  • 26 juil. 2024
  • 12 juil. 2024
  • 28 juin 2024
  • 14 juin 2024
  • 31 mai 2024
  • 17 mai 2024
  • 10 mai 2024
  • 26 avr. 2024
  • 19 avr. 2024
  • 12 avr. 2024
  • 5 avr. 2024
  • 25 mars 2024
  • 18 mars 2024
  • 11 mars 2024
  • 4 mars 2024
  • 26 févr. 2024
  • 19 févr. 2024
  • 12 févr. 2024
  • 5 févr. 2024
  • 29 janv. 2024
  • 22 janv. 2024
  • 15 janv. 2024
  • Documentation LLM
    • Documentation LLM Prête de Rememberizer
Powered by GitBook
On this page
  • Améliorations
  • Corrections de bogues
  1. Sorties 2025

28 mar. 2025

Cette version se concentre sur l'amélioration de la stabilité et des performances avec des corrections de bogues critiques et des optimisations.

Améliorations

  • Performance Améliorée du Traitement des Documents: Amélioration des performances du backend lors du traitement de lots de documents enfants, ce qui entraîne des opérations plus rapides.

Corrections de bogues

  • Correction du plantage de l'application Web sur de grandes tables : Résolu un problème provoquant le plantage de l'application Web lors du rendu de grandes tables contenant plus de 200 000 éléments.

  • Assuré la cohérence de la base de données : Traité les fichiers de migration manquants dans le backend pour garantir la stabilité et la cohérence de la base de données.

Previous4 avr. 2025Next21 mar. 2025

Last updated 1 month ago