Rememberizer Docs
Se connecterS'inscrireContactez-nous
Français
Français
  • Pourquoi Rememberizer ?
  • Contexte
    • Qu'est-ce que les embeddings vectoriels et les bases de données vectorielles ?
    • Glossaire
    • Terminologie standardisée
  • Utilisation personnelle
    • Commencer
      • Rechercher vos connaissances
      • Accès au filtre de souvenirs
      • Connaissances communes
      • Gérer vos connaissances intégrées
  • Intégrations
    • Application Rememberizer
    • Intégration Rememberizer Slack
    • Intégration Rememberizer Google Drive
    • Intégration Rememberizer Dropbox
    • Intégration Rememberizer Gmail
    • Intégration Rememberizer Memory
    • Serveurs MCP Rememberizer
    • Gérer les applications tierces
  • Ressources pour les développeurs
    • Aperçu des développeurs
  • Options d'intégration
    • Enregistrement et utilisation des clés API
    • Enregistrement des applications Rememberizer
    • Autorisation des applications Rememberizer
    • Création d'un GPT Rememberizer
    • Intégration LangChain
    • Magasins de vecteurs
    • Talk-to-Slack l'application Web d'exemple
  • Intégration d'entreprise
    • Modèles d'intégration d'entreprise
  • Référence API
    • Accueil de la documentation API
    • Authentification
  • APIs principales
    • Rechercher des documents par similarité sémantique
    • Récupérer des documents
    • Récupérer le contenu des documents
    • Récupérer le contenu Slack
    • Mémoriser le contenu dans Rememberizer
  • Compte & Configuration
    • Récupérer les détails du compte utilisateur actuel
    • Lister les intégrations de sources de données disponibles
    • Mementos
    • Obtenir toutes les connaissances publiques ajoutées
  • APIs de stockage vectoriel
    • Documentation sur le stockage vectoriel
    • Obtenir des informations sur le stockage vectoriel
    • Obtenir une liste de documents dans un stockage vectoriel
    • Obtenir des informations sur un document
    • Ajouter un nouveau document texte à un stockage vectoriel
    • Télécharger des fichiers dans un stockage vectoriel
    • Mettre à jour le contenu d'un fichier dans un stockage vectoriel
    • Supprimer un document dans le stockage vectoriel
    • Rechercher des documents de stockage vectoriel par similarité sémantique
  • Ressources supplémentaires
    • Avis
      • Conditions d'utilisation
      • Politique de confidentialité
      • B2B
        • À propos de Reddit Agent
  • Versions
    • Notes de version Accueil
  • Sorties 2025
    • 25 avr. 2025
    • 18 avr. 2025
    • 11 avr. 2025
    • 4 avr. 2025
    • 28 mar. 2025
    • 21 mar. 2025
    • 14 mar. 2025
    • 17 janv. 2025
  • Sorties 2024
    • 27 déc. 2024
    • 20 déc. 2024
    • 13 déc. 2024
    • 6 déc. 2024
  • 29 nov. 2024
  • 22 nov. 2024
  • 15 nov. 2024
  • 8 nov. 2024
  • 1er nov. 2024
  • 25 oct. 2024
  • 18 oct. 2024
  • 11 oct. 2024
  • 4 oct. 2024
  • 27 sept. 2024
  • 20 sept. 2024
  • 13 sept. 2024
  • 16 août 2024
  • 9 août 2024
  • 2 août 2024
  • 26 juil. 2024
  • 12 juil. 2024
  • 28 juin 2024
  • 14 juin 2024
  • 31 mai 2024
  • 17 mai 2024
  • 10 mai 2024
  • 26 avr. 2024
  • 19 avr. 2024
  • 12 avr. 2024
  • 5 avr. 2024
  • 25 mars 2024
  • 18 mars 2024
  • 11 mars 2024
  • 4 mars 2024
  • 26 févr. 2024
  • 19 févr. 2024
  • 12 févr. 2024
  • 5 févr. 2024
  • 29 janv. 2024
  • 22 janv. 2024
  • 15 janv. 2024
  • Documentation LLM
    • Documentation LLM Prête de Rememberizer
Powered by GitBook
On this page
  1. Utilisation personnelle
  2. Commencer

Rechercher vos connaissances

Dans Rememberizer, vous pouvez publier un thème ou une question, et Rememberizer fournira une liste de fichiers et extraira des parties qui sont conceptuellement similaires.

PreviousCommencerNextAccès au filtre de souvenirs

Last updated 22 days ago

Rechercher dans Rememberizer

  • Dans la barre de navigation, choisissez Personnel > Rechercher votre connaissance. Vous verrez alors la page de recherche dans Rememberizer.

La recherche de Rememberizer utilise des embeddings vectoriels avancés pour trouver du contenu sémantiquement similaire plutôt que de simples correspondances de mots-clés. Pour en savoir plus sur le fonctionnement de cette technologie, consultez

Les développeurs peuvent accéder à cette même capacité de recherche sémantique via l'API. Consultez pour plus de détails.

  • Tapez la question ou le thème que vous souhaitez rechercher, puis choisissez le memento que vous souhaitez limiter l'accès de l'application et cliquez sur le bouton Rememberizer (ou appuyez sur Entrée). Le processus de recherche peut prendre quelques minutes, en fonction de la quantité de données dans le Memento.

  • Finalement, vous verrez une liste de documents correspondant à la question ou au thème que vous exigez. Vous pouvez cliquer sur le fichier et il déroulera le texte correspondant lié à votre question ou thème.

Qu'est-ce que les embeddings vectoriels et les bases de données vectorielles ?
Rechercher des documents par similarité sémantique
Filtrage de Memento dans la recherche Rememberizer
Un exemple de résultat de recherche
navbar search rememberizer (1)
page de recherche rememberizer
Filtrage de Memento dans la recherche Rememberizer
Un exemple de résultat de recherche