Rememberizer Docs
로그인가입하기문의하기
한국어
한국어
  • 왜 Rememberizer인가?
  • 배경
    • 벡터 임베딩과 벡터 데이터베이스란?
    • 용어집
    • 표준화된 용어
  • 개인 사용
    • 시작하기
      • 지식 검색
      • 기념품 필터 접근
      • 공통 지식
      • 내장된 지식 관리
  • 통합
    • Rememberizer 앱
    • Rememberizer Slack 통합
    • Rememberizer Google Drive 통합
    • Rememberizer Dropbox 통합
    • Rememberizer Gmail 통합
    • Rememberizer Memory 통합
    • Rememberizer MCP 서버
    • 타사 앱 관리
  • 개발자 리소스
    • 개발자 개요
  • 통합 옵션
    • API 키 등록 및 사용
    • Rememberizer 앱 등록
    • Rememberizer 앱 승인
    • Rememberizer GPT 생성
    • LangChain 통합
    • 벡터 저장소
    • Slack과 대화하는 샘플 웹 앱
  • 기업 통합
    • 기업 통합 패턴
  • API 참조
    • API 문서 홈
    • 인증
  • 핵심 API
    • 의미적 유사성으로 문서 검색
    • 문서 검색
    • 문서 내용 검색
    • 슬랙 콘텐츠 검색
    • Rememberizer에 콘텐츠 기억하기
  • 계정 및 구성
    • 현재 사용자 계정 세부정보 가져오기
    • 사용 가능한 데이터 소스 통합 목록
    • 기념품
    • 추가된 모든 공개 지식 가져오기
  • 벡터 저장소 API
    • 벡터 저장소 문서
    • 벡터 저장소 정보 가져오기
    • 벡터 저장소의 문서 목록 가져오기
    • 문서 정보 가져오기
    • 벡터 저장소에 새 텍스트 문서 추가하기
    • 벡터 저장소에 파일 업로드하기
    • 벡터 저장소의 파일 내용 업데이트하기
    • 벡터 저장소에서 문서 제거하기
    • 의미적 유사성으로 벡터 저장소 문서 검색하기
  • 추가 자료
    • 공지사항
      • 이용 약관
      • 개인정보 처리방침
      • B2B
        • 레딧 에이전트에 대하여
  • 릴리스
    • 릴리스 노트 홈
  • 2025 릴리스
    • 2025년 4월 25일
    • 2025년 4월 18일
    • 2025년 4월 11일
    • 2025년 4월 4일
    • 2025년 3월 28일
    • 2025년 3월 21일
    • 2025년 3월 14일
    • 2025년 1월 17일
  • 2024 릴리스
    • 2024년 12월 27일
    • 2024년 12월 20일
    • 2024년 12월 13일
    • 2024년 12월 6일
  • 2024년 11월 29일
  • 2024년 11월 22일
  • 2024년 11월 15일
  • 2024년 11월 8일
  • 2024년 11월 1일
  • 2024년 10월 25일
  • 2024년 10월 18일
  • 2024년 10월 11일
  • 2024년 10월 4일
  • 2024년 9월 27일
  • 2024년 9월 20일
  • 2024년 9월 13일
  • 2024년 8월 16일
  • 2024년 8월 9일
  • 2024년 8월 2일
  • 2024년 7월 26일
  • 2024년 7월 12일
  • 2024년 6월 28일
  • 2024년 6월 14일
  • 2024년 5월 31일
  • 2024년 5월 17일
  • 2024년 5월 10일
  • 2024년 4월 26일
  • 2024년 4월 19일
  • 2024년 4월 12일
  • 2024년 4월 5일
  • 2024년 3월 25일
  • 2024년 3월 18일
  • 2024년 3월 11일
  • 2024년 3월 4일
  • 2024년 2월 26일
  • 2024년 2월 19일
  • 2024년 2월 12일
  • 2024년 2월 5일
  • 2024년 1월 29일
  • 2024년 1월 22일
  • 2024년 1월 15일
  • LLM 문서
    • Rememberizer LLM 준비 문서
Powered by GitBook
On this page
  1. 핵심 API

문서 내용 검색

Previous문서 검색Next슬랙 콘텐츠 검색

Last updated 25 days ago

예제 요청

curl -X GET \
  "https://api.rememberizer.ai/api/v1/documents/12345/contents/?start_chunk=0&end_chunk=20" \
  -H "Authorization: Bearer YOUR_JWT_TOKEN"

YOUR_JWT_TOKEN을 실제 JWT 토큰으로, 12345를 실제 문서 ID로 교체하세요.

const getDocumentContents = async (documentId, startChunk = 0, endChunk = 20) => {
  const url = new URL(`https://api.rememberizer.ai/api/v1/documents/${documentId}/contents/`);
  url.searchParams.append('start_chunk', startChunk);
  url.searchParams.append('end_chunk', endChunk);
  
  const response = await fetch(url.toString(), {
    method: 'GET',
    headers: {
      'Authorization': 'Bearer YOUR_JWT_TOKEN'
    }
  });
  
  const data = await response.json();
  console.log(data);
  
  // 더 많은 청크가 있는 경우 가져올 수 있습니다.
  if (data.end_chunk < totalChunks) {
    // 다음 청크 세트를 가져옵니다.
    await getDocumentContents(documentId, data.end_chunk, data.end_chunk + 20);
  }
};

getDocumentContents(12345);

YOUR_JWT_TOKEN을 실제 JWT 토큰으로, 12345를 실제 문서 ID로 교체하세요.

import requests

def get_document_contents(document_id, start_chunk=0, end_chunk=20):
    headers = {
        "Authorization": "Bearer YOUR_JWT_TOKEN"
    }
    
    params = {
        "start_chunk": start_chunk,
        "end_chunk": end_chunk
    }
    
    response = requests.get(
        f"https://api.rememberizer.ai/api/v1/documents/{document_id}/contents/",
        headers=headers,
        params=params
    )
    
    data = response.json()
    print(data)
    
    # 더 많은 청크가 있는 경우 가져올 수 있습니다.
    # 이것은 단순한 예제입니다 - 적절한 재귀 확인을 구현할 수 있습니다.
    if 'end_chunk' in data and data['end_chunk'] < total_chunks:
        get_document_contents(document_id, data['end_chunk'], data['end_chunk'] + 20)

get_document_contents(12345)

YOUR_JWT_TOKEN을 실제 JWT 토큰으로, 12345를 실제 문서 ID로 교체하세요.

경로 매개변수

매개변수
유형
설명

document_id

정수

필수. 내용을 검색할 문서의 ID입니다.

쿼리 매개변수

매개변수
유형
설명

start_chunk

정수

시작 청크 인덱스. 기본값은 0입니다.

end_chunk

정수

종료 청크 인덱스. 기본값은 start_chunk + 20입니다.

응답 형식

{
  "content": "문서 조각의 전체 텍스트 내용...",
  "end_chunk": 20
}

오류 응답

상태 코드
설명

404

문서를 찾을 수 없음

500

내부 서버 오류

대용량 문서의 페이지 매김

대용량 문서의 경우, 콘텐츠가 청크로 나뉩니다. 여러 요청을 통해 전체 문서를 검색할 수 있습니다:

  1. start_chunk=0으로 초기 요청을 합니다.

  2. 반환된 end_chunk 값을 다음 요청의 start_chunk로 사용합니다.

  3. 모든 청크를 검색할 때까지 계속합니다.

이 엔드포인트는 문서의 원시 텍스트 콘텐츠를 반환하여, 자세한 처리나 분석을 위해 전체 정보를 액세스할 수 있도록 합니다.

Retrieve contents of a document by its ID.

get

Returns the content of the document with the specified ID, along with the index of the latest retrieved chunk. Each call fetches up to 20 chunks. To get more, use the end_chunk value from the response as the start_chunk for the next call.

Path parameters
document_idintegerRequired

The ID of the document to retrieve contents for.

Query parameters
start_chunkintegerOptional

Indicate the starting chunk that you want to retrieve. If not specified, the default value is 0.

end_chunkintegerOptional

Indicate the ending chunk that you want to retrieve. If not specified, the default value is start_chunk + 20.

Responses
200
Content of the document and index of the latest retrieved chunk.
application/json
404
Document not found.
500
Internal server error.
get
GET /api/v1/documents/{document_id}/contents/ HTTP/1.1
Host: api.rememberizer.ai
Accept: */*
{
  "content": "text",
  "end_chunk": 20
}
  • GETRetrieve contents of a document by its ID.
  • 예제 요청
  • 경로 매개변수
  • 쿼리 매개변수
  • 응답 형식
  • 오류 응답
  • 대용량 문서의 페이지 매김