Rememberizer Docs
anmeldenMelden Sie sich anKontaktiere uns
Deutsch
Deutsch
  • Warum Rememberizer?
  • Hintergrund
    • Was sind Vektor-Embeddings und Vektor-Datenbanken?
    • Glossar
    • Standardisierte Terminologie
  • Persönliche Nutzung
    • Erste Schritte
      • Durchsuche dein Wissen
      • Zugriff auf Mementos-Filter
      • Allgemeines Wissen
      • Verwalte dein eingebettetes Wissen
  • Integrationen
    • Rememberizer App
    • Rememberizer Slack-Integration
    • Rememberizer Google Drive-Integration
    • Rememberizer Dropbox-Integration
    • Rememberizer Gmail-Integration
    • Rememberizer Memory-Integration
    • Rememberizer MCP-Server
    • Drittanbieter-Apps verwalten
  • Entwicklerressourcen
    • Entwicklerübersicht
  • Integrationsoptionen
    • Registrierung und Verwendung von API-Schlüsseln
    • Registrierung von Rememberizer-Apps
    • Autorisierung von Rememberizer-Apps
    • Erstellung eines Rememberizer GPT
    • LangChain-Integration
    • Vektor-Speicher
    • Talk-to-Slack die Beispiel-Webanwendung
  • Unternehmensintegration
    • Muster der Unternehmensintegration
  • API-Referenz
    • API-Dokumentation Startseite
    • Authentifizierung
  • Kern-APIs
    • Dokumente nach semantischer Ähnlichkeit suchen
    • Dokumente abrufen
    • Inhalte von Dokumenten abrufen
    • Slack-Inhalte abrufen
    • Inhalte an Rememberizer merken
  • Konto & Konfiguration
    • Aktuelle Kontodetails des Benutzers abrufen
    • Verfügbare Datenquellenintegrationen auflisten
    • Mementos
    • Alle hinzugefügten öffentlichen Kenntnisse abrufen
  • Vektor-Speicher-APIs
    • Dokumentation zum Vektor-Speicher
    • Vektor-Speicherinformationen abrufen
    • Liste der Dokumente in einem Vektor-Speicher abrufen
    • Dokumentinformationen abrufen
    • Neues Textdokument zu einem Vektor-Speicher hinzufügen
    • Dateien in einen Vektor-Speicher hochladen
    • Dateiinhalte in einem Vektor-Speicher aktualisieren
    • Ein Dokument im Vektor-Speicher entfernen
    • Nach Dokumenten im Vektor-Speicher anhand semantischer Ähnlichkeit suchen
  • Zusätzliche Ressourcen
    • Hinweise
      • Nutzungsbedingungen
      • Datenschutzrichtlinie
      • B2B
        • Über Reddit Agent
  • Veröffentlichungen
    • Versionshinweise Startseite
  • 2025 Veröffentlichungen
    • 25. Apr 2025
    • 18. Apr 2025
    • 11. Apr 2025
    • 4. Apr 2025
    • 28. Mär 2025
    • 21. Mär 2025
    • 14. Mär 2025
    • 17. Jan 2025
  • 2024 Veröffentlichungen
    • 27. Dez 2024
    • 20. Dez 2024
    • 13. Dez 2024
    • 6. Dez 2024
  • 29. Nov 2024
  • 22. Nov 2024
  • 15. Nov 2024
  • 8. Nov 2024
  • 1. Nov 2024
  • 25. Okt 2024
  • 18. Okt 2024
  • 11. Okt 2024
  • 4. Okt 2024
  • 27. Sep 2024
  • 20. Sep 2024
  • 13. Sep 2024
  • 16. Aug 2024
  • 9. Aug 2024
  • 2. Aug 2024
  • 26. Juli 2024
  • 12. Juli 2024
  • 28. Juni 2024
  • 14. Juni 2024
  • 31. Mai 2024
  • 17. Mai 2024
  • 10. Mai 2024
  • 26. Apr 2024
  • 19. Apr 2024
  • 12. Apr 2024
  • 5. Apr 2024
  • 25. März 2024
  • 18. März 2024
  • 11. März 2024
  • 4. März 2024
  • 26. Feb 2024
  • 19. Feb 2024
  • 12. Feb 2024
  • 5. Feb 2024
  • 29. Jan 2024
  • 22. Jan 2024
  • 15. Jan 2024
  • LLM-Dokumentation
    • Rememberizer LLM Bereit Dokumentation
Powered by GitBook
On this page
  • Neue Funktionen
  • Verbesserungen
  • Fehlerbehebungen
  1. 2024 Veröffentlichungen

27. Dez 2024

Diese Version konzentriert sich auf die Verbesserung der Funktionalität des Vektorspeichers mit Agentic Search und die Verbesserung der Stabilität durch wichtige Fehlerbehebungen.

Neue Funktionen

  • Agentische Suche im Vektor-Speicher: Fortschrittliche Suchfunktionen im Vektor-Speicher eingeführt, um eine präzisere und effizientere Datenabfrage zu ermöglichen.

Verbesserungen

  • Verbesserte Datenverwaltung: Automatische Entfernung von Vektordaten bei Löschung von Dokumenten implementiert, um die Datenkonsistenz sicherzustellen.

Fehlerbehebungen

  • Fehlerbehebungen beim Laden und Erstellen von Vektorspeichern: Probleme behoben, die die Erstellung von Vektorspeichern und das Laden von Einbettungs-Binärdateien verhinderten, wodurch die Systemzuverlässigkeit verbessert wurde.

Previous17. Jan 2025Next20. Dez 2024

Last updated 4 months ago