Enterprise Integration Patterns
Architectural patterns, security considerations, and best practices for enterprise integrations with Rememberizer
This guide provides comprehensive information for organizations looking to integrate Rememberizer's knowledge management and semantic search capabilities into enterprise environments. It covers architectural patterns, security considerations, scalability, and best practices.
Enterprise Integration Overview
Rememberizer offers robust enterprise integration capabilities that extend beyond basic API usage, allowing organizations to build sophisticated knowledge management systems that:
Scale to meet organizational needs across departments and teams
Maintain security and compliance with enterprise requirements
Integrate with existing systems and workflow tools
Enable team-based access control and knowledge sharing
Support high-volume batch operations for document processing
Architectural Patterns for Enterprise Integration
1. Multi-Tenant Knowledge Management
Organizations can implement a multi-tenant architecture to organize knowledge by teams, departments, or functions:
┌───────────────┐
│ Rememberizer│
│ Platform │
└───────┬───────┘
│
┌─────────────────┼─────────────────┐
│ │ │
┌───────▼────────┐ ┌──────▼───────┐ ┌───────▼────────┐
│ Engineering │ │ Sales │ │ Legal │
│ Knowledge Base│ │ Knowledge Base│ │ Knowledge Base │
└───────┬────────┘ └──────┬───────┘ └───────┬────────┘
│ │ │
│ │ │
┌───────▼────────┐ ┌──────▼───────┐ ┌───────▼────────┐
│ Team-specific │ │ Team-specific│ │ Team-specific │
│ Mementos │ │ Mementos │ │ Mementos │
└────────────────┘ └──────────────┘ └─────────────────┘
Implementation Steps:
Create separate vector stores for each department or major knowledge domain
Configure team-based access control using Rememberizer's team functionality
Define mementos to control access to specific knowledge subsets
Implement role-based permissions for knowledge administrators and consumers
2. Integration Hub Architecture
For enterprises with existing systems, the hub-and-spoke pattern allows Rememberizer to act as a central knowledge repository:
┌─────────────┐ ┌─────────────┐
│ CRM System │ │ ERP System │
└──────┬──────┘ └──────┬──────┘
│ │
│ │
▼ ▼
┌──────────────────────────────────────────┐
│ │
│ Enterprise Service Bus │
│ │
└────────────────────┬─────────────────────┘
│
▼
┌───────────────────┐
│ Rememberizer │
│ Knowledge Platform│
└─────────┬─────────┘
│
┌─────────────────┴────────────────┐
│ │
┌─────────▼──────────┐ ┌──────────▼────────┐
│ Internal Knowledge │ │ Customer Knowledge │
│ Base │ │ Base │
└────────────────────┘ └─────────────────────┘
Implementation Steps:
Create and configure API keys for system-to-system integration
Implement OAuth2 for user-based access to knowledge repositories
Set up ETL processes for regular knowledge synchronization
Use webhooks to notify external systems of knowledge updates
3. Microservices Architecture
For organizations adopting microservices, integrate Rememberizer as a specialized knowledge service:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ User Service│ │ Auth Service│ │ Data Service│ │ Search UI │
└──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘
│ │ │ │
└────────────────┼────────────────┼────────────────┘
│ │
▼ ▼
┌─────────────────────────────────┐
│ API Gateway │
└─────────────────┬─────────────┘
│
▼
┌───────────────────┐
│ Rememberizer │
│ Knowledge API │
└───────────────────┘
Implementation Steps:
Create dedicated service accounts for microservices integration
Implement JWT token-based authentication for service-to-service communication
Design idempotent API interactions for resilience
Implement circuit breakers for fault tolerance
Enterprise Security Patterns
Authentication & Authorization
Rememberizer supports multiple authentication methods suitable for enterprise environments:
1. OAuth2 Integration
For user-based access, implement the OAuth2 authorization flow:
// Step 1: Redirect users to Rememberizer authorization endpoint
function redirectToAuth() {
const authUrl = 'https://api.rememberizer.ai/oauth/authorize/';
const params = new URLSearchParams({
client_id: 'YOUR_CLIENT_ID',
redirect_uri: 'YOUR_REDIRECT_URI',
response_type: 'code',
scope: 'read write'
});
window.location.href = `${authUrl}?${params.toString()}`;
}
// Step 2: Exchange authorization code for tokens
async function exchangeCodeForTokens(code) {
const tokenUrl = 'https://api.rememberizer.ai/oauth/token/';
const response = await fetch(tokenUrl, {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
client_id: 'YOUR_CLIENT_ID',
client_secret: 'YOUR_CLIENT_SECRET',
grant_type: 'authorization_code',
code: code,
redirect_uri: 'YOUR_REDIRECT_URI'
})
});
return response.json();
}
2. Service Account Authentication
For system-to-system integration, use API key authentication:
import requests
def search_knowledge_base(query, api_key):
headers = {
'X-API-Key': api_key,
'Content-Type': 'application/json'
}
payload = {
'query': query,
'num_results': 10
}
response = requests.post(
'https://api.rememberizer.ai/api/v1/search/',
headers=headers,
json=payload
)
return response.json()
3. SAML and Enterprise SSO
For enterprise single sign-on integration:
Configure your identity provider (Okta, Azure AD, etc.) to recognize Rememberizer as a service provider
Set up SAML attribute mapping to match Rememberizer user attributes
Configure Rememberizer to delegate authentication to your identity provider
Zero Trust Security Model
Implement a zero trust approach with Rememberizer by:
Micro-segmentation: Create separate knowledge bases with distinct access controls
Continuous Verification: Implement short-lived tokens and regular reauthentication
Least Privilege: Define fine-grained mementos that limit access to specific knowledge subsets
Event Logging: Monitor and audit all access to sensitive knowledge
Scalability Patterns
Batch Processing for Document Ingestion
For large-scale document ingestion, implement the batch upload pattern:
import requests
import time
from concurrent.futures import ThreadPoolExecutor
def batch_upload_documents(files, api_key, batch_size=5):
"""
Upload documents in batches to avoid rate limits
Args:
files: List of file paths to upload
api_key: Rememberizer API key
batch_size: Number of concurrent uploads
"""
headers = {
'X-API-Key': api_key
}
results = []
# Process files in batches
with ThreadPoolExecutor(max_workers=batch_size) as executor:
for i in range(0, len(files), batch_size):
batch = files[i:i+batch_size]
futures = []
# Submit batch of uploads
for file_path in batch:
with open(file_path, 'rb') as f:
files = {'file': f}
future = executor.submit(
requests.post,
'https://api.rememberizer.ai/api/v1/documents/upload/',
headers=headers,
files=files
)
futures.append(future)
# Collect results
for future in futures:
response = future.result()
results.append(response.json())
# Rate limiting - pause between batches
if i + batch_size < len(files):
time.sleep(1)
return results
High-Volume Search Operations
For applications requiring high-volume search:
async function batchSearchWithRateLimit(queries, apiKey, options = {}) {
const {
batchSize = 5,
delayBetweenBatches = 1000,
maxRetries = 3,
retryDelay = 2000
} = options;
const results = [];
// Process queries in batches
for (let i = 0; i < queries.length; i += batchSize) {
const batch = queries.slice(i, i + batchSize);
const batchPromises = batch.map(query => searchWithRetry(query, apiKey, maxRetries, retryDelay));
// Execute batch
const batchResults = await Promise.all(batchPromises);
results.push(...batchResults);
// Apply rate limiting between batches
if (i + batchSize < queries.length) {
await new Promise(resolve => setTimeout(resolve, delayBetweenBatches));
}
}
return results;
}
async function searchWithRetry(query, apiKey, maxRetries, retryDelay) {
let retries = 0;
while (retries < maxRetries) {
try {
const response = await fetch('https://api.rememberizer.ai/api/v1/search/', {
method: 'POST',
headers: {
'X-API-Key': apiKey,
'Content-Type': 'application/json'
},
body: JSON.stringify({ query })
});
if (response.ok) {
return response.json();
}
// Handle rate limiting specifically
if (response.status === 429) {
const retryAfter = response.headers.get('Retry-After') || retryDelay / 1000;
await new Promise(resolve => setTimeout(resolve, retryAfter * 1000));
retries++;
continue;
}
// Other errors
throw new Error(`Search failed with status: ${response.status}`);
} catch (error) {
retries++;
if (retries >= maxRetries) {
throw error;
}
await new Promise(resolve => setTimeout(resolve, retryDelay));
}
}
}
Team-Based Knowledge Management
Rememberizer supports team-based knowledge management, enabling enterprises to:
Create team workspaces: Organize knowledge by department or function
Assign role-based permissions: Control who can view, edit, or administer knowledge
Share knowledge across teams: Configure cross-team access to specific knowledge bases
Team Roles and Permissions
Rememberizer supports the following team roles:
Owner
Full administrative access, can manage team members and all knowledge
Admin
Can manage knowledge and configure mementos, but cannot manage the team itself
Member
Can view and search knowledge according to memento permissions
Implementing Team-Based Knowledge Sharing
import requests
def create_team_knowledge_base(team_id, name, description, api_key):
"""
Create a knowledge base for a specific team
"""
headers = {
'X-API-Key': api_key,
'Content-Type': 'application/json'
}
payload = {
'team_id': team_id,
'name': name,
'description': description
}
response = requests.post(
'https://api.rememberizer.ai/api/v1/teams/knowledge/',
headers=headers,
json=payload
)
return response.json()
def grant_team_access(knowledge_id, team_id, permission_level, api_key):
"""
Grant a team access to a knowledge base
Args:
knowledge_id: ID of the knowledge base
team_id: ID of the team to grant access
permission_level: 'read', 'write', or 'admin'
api_key: Rememberizer API key
"""
headers = {
'X-API-Key': api_key,
'Content-Type': 'application/json'
}
payload = {
'team_id': team_id,
'knowledge_id': knowledge_id,
'permission': permission_level
}
response = requests.post(
'https://api.rememberizer.ai/api/v1/knowledge/permissions/',
headers=headers,
json=payload
)
return response.json()
Enterprise Integration Best Practices
1. Implement Robust Error Handling
Design your integration to handle various error scenarios gracefully:
async function robustApiCall(endpoint, method, payload, apiKey) {
try {
const response = await fetch(`https://api.rememberizer.ai/api/v1/${endpoint}`, {
method,
headers: {
'X-API-Key': apiKey,
'Content-Type': 'application/json'
},
body: method !== 'GET' ? JSON.stringify(payload) : undefined
});
// Handle different response types
if (response.status === 204) {
return { success: true };
}
if (!response.ok) {
const error = await response.json();
throw new Error(error.message || `API call failed with status: ${response.status}`);
}
return await response.json();
} catch (error) {
// Log error details for troubleshooting
console.error(`API call to ${endpoint} failed:`, error);
// Provide meaningful error to calling code
throw new Error(`Failed to ${method} ${endpoint}: ${error.message}`);
}
}
2. Implement Caching for Frequently Accessed Knowledge
Reduce API load and improve performance with appropriate caching:
import requests
import time
from functools import lru_cache
# Cache frequently accessed documents for 10 minutes
@lru_cache(maxsize=100)
def get_document_with_cache(document_id, api_key, timestamp=None):
"""
Get a document with caching
Args:
document_id: ID of the document to retrieve
api_key: Rememberizer API key
timestamp: Cache invalidation timestamp (default: 10 min chunks)
"""
# Generate a timestamp that changes every 10 minutes for cache invalidation
if timestamp is None:
timestamp = int(time.time() / 600)
headers = {
'X-API-Key': api_key
}
response = requests.get(
f'https://api.rememberizer.ai/api/v1/documents/{document_id}/',
headers=headers
)
return response.json()
3. Implement Asynchronous Processing for Document Uploads
For large document sets, implement asynchronous processing:
async function uploadLargeDocument(file, apiKey) {
// Step 1: Initiate upload
const initResponse = await fetch('https://api.rememberizer.ai/api/v1/documents/upload-async/', {
method: 'POST',
headers: {
'X-API-Key': apiKey,
'Content-Type': 'application/json'
},
body: JSON.stringify({
filename: file.name,
filesize: file.size,
content_type: file.type
})
});
const { upload_id, upload_url } = await initResponse.json();
// Step 2: Upload file to the provided URL
await fetch(upload_url, {
method: 'PUT',
body: file
});
// Step 3: Monitor processing status
const processingId = await initiateProcessing(upload_id, apiKey);
return monitorProcessingStatus(processingId, apiKey);
}
async function initiateProcessing(uploadId, apiKey) {
const response = await fetch('https://api.rememberizer.ai/api/v1/documents/process/', {
method: 'POST',
headers: {
'X-API-Key': apiKey,
'Content-Type': 'application/json'
},
body: JSON.stringify({
upload_id: uploadId
})
});
const { processing_id } = await response.json();
return processing_id;
}
async function monitorProcessingStatus(processingId, apiKey, interval = 2000) {
while (true) {
const statusResponse = await fetch(`https://api.rememberizer.ai/api/v1/documents/process-status/${processingId}/`, {
headers: {
'X-API-Key': apiKey
}
});
const status = await statusResponse.json();
if (status.status === 'completed') {
return status.document_id;
} else if (status.status === 'failed') {
throw new Error(`Processing failed: ${status.error}`);
}
// Wait before checking again
await new Promise(resolve => setTimeout(resolve, interval));
}
}
4. Implement Proper Rate Limiting
Respect API rate limits to ensure reliable operation:
import requests
import time
from functools import wraps
class RateLimiter:
def __init__(self, calls_per_second=5):
self.calls_per_second = calls_per_second
self.last_call_time = 0
self.min_interval = 1.0 / calls_per_second
def __call__(self, func):
@wraps(func)
def wrapper(*args, **kwargs):
current_time = time.time()
time_since_last_call = current_time - self.last_call_time
if time_since_last_call < self.min_interval:
sleep_time = self.min_interval - time_since_last_call
time.sleep(sleep_time)
self.last_call_time = time.time()
return func(*args, **kwargs)
return wrapper
# Apply rate limiting to API calls
@RateLimiter(calls_per_second=5)
def search_documents(query, api_key):
headers = {
'X-API-Key': api_key,
'Content-Type': 'application/json'
}
payload = {
'query': query
}
response = requests.post(
'https://api.rememberizer.ai/api/v1/search/',
headers=headers,
json=payload
)
return response.json()
Compliance Considerations
Data Residency
For organizations with data residency requirements:
Choose appropriate region: Select Rememberizer deployments in compliant regions
Document data flows: Map where knowledge is stored and processed
Implement filtering: Use mementos to restrict sensitive data access
Audit Logging
Implement comprehensive audit logging for compliance:
import requests
import json
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[
logging.FileHandler('rememberizer_audit.log'),
logging.StreamHandler()
]
)
def audit_log_api_call(endpoint, method, user_id, result_status):
"""
Log API call details for audit purposes
"""
log_entry = {
'timestamp': time.time(),
'endpoint': endpoint,
'method': method,
'user_id': user_id,
'status': result_status
}
logging.info(f"API CALL: {json.dumps(log_entry)}")
def search_with_audit(query, api_key, user_id):
endpoint = 'search'
method = 'POST'
try:
headers = {
'X-API-Key': api_key,
'Content-Type': 'application/json'
}
payload = {
'query': query
}
response = requests.post(
'https://api.rememberizer.ai/api/v1/search/',
headers=headers,
json=payload
)
status = 'success' if response.ok else 'error'
audit_log_api_call(endpoint, method, user_id, status)
return response.json()
except Exception as e:
audit_log_api_call(endpoint, method, user_id, 'exception')
raise
Next Steps
To implement enterprise integrations with Rememberizer:
Design your knowledge architecture: Map out knowledge domains and access patterns
Set up role-based team structures: Create teams and assign appropriate permissions
Implement authentication flows: Choose and implement the authentication methods that meet your requirements
Design scalable workflows: Implement batch processing for document ingestion
Establish monitoring and audit policies: Set up logging and monitoring for compliance and operations
Related Resources
Mementos Filter Access - Control which data sources are available to integrations
API Documentation - Complete API reference for all endpoints
LangChain Integration - Programmatic integration with the LangChain framework
Creating a Rememberizer GPT - Integration with OpenAI's GPT platform
Vector Stores - Technical details of Rememberizer's vector database implementation
For additional assistance with enterprise integrations, contact the Rememberizer team through the Support portal.
Last updated