Rememberizer Docs
Sign inSign upContact us
English
English
  • Why Rememberizer?
  • Background
    • What are Vector Embeddings and Vector Databases?
    • Glossary
    • Standardized Terminology
  • Personal Use
    • Getting Started
      • Search your knowledge
      • Mementos Filter Access
      • Common knowledge
      • Manage your embedded knowledge
  • Integrations
    • Rememberizer App
    • Rememberizer Slack integration
    • Rememberizer Google Drive integration
    • Rememberizer Dropbox integration
    • Rememberizer Gmail integration
    • Rememberizer Memory integration
    • Rememberizer MCP Servers
    • Manage third-party apps
  • Developer Resources
    • Developer Overview
  • Integration Options
    • Registering and using API Keys
    • Registering Rememberizer apps
    • Authorizing Rememberizer apps
    • Creating a Rememberizer GPT
    • LangChain integration
    • Vector Stores
    • Talk-to-Slack the Sample Web App
  • Enterprise Integration
    • Enterprise Integration Patterns
  • API Reference
    • API Documentation Home
    • Authentication
  • Core APIs
    • Search for documents by semantic similarity
    • Retrieve documents
    • Retrieve document contents
    • Retrieve Slack content
    • Memorize content to Rememberizer
  • Account & Configuration
    • Retrieve current user account details
    • List available data source integrations
    • Mementos
    • Get all added public knowledge
  • Vector Store APIs
    • Vector Store Documentation
    • Get vector store information
    • Get a list of documents in a Vector Store
    • Get document information
    • Add new text document to a Vector Store
    • Upload files to a Vector Store
    • Update file content in a Vector Store
    • Remove a document in Vector Store
    • Search for Vector Store documents by semantic similarity
  • Additional Resources
    • Notices
      • Terms of Use
      • Privacy Policy
      • B2B
        • About Reddit Agent
  • Releases
    • Release Notes Home
  • 2025 Releases
    • Apr 25th, 2025
    • Apr 18th, 2025
    • Apr 11th, 2025
    • Apr 4th, 2025
    • Mar 28th, 2025
    • Mar 21st, 2025
    • Mar 14th, 2025
    • Jan 17th, 2025
  • 2024 Releases
    • Dec 27th, 2024
    • Dec 20th, 2024
    • Dec 13th, 2024
    • Dec 6th, 2024
  • Nov 29th, 2024
  • Nov 22nd, 2024
  • Nov 15th, 2024
  • Nov 8th, 2024
  • Nov 1st, 2024
  • Oct 25th, 2024
  • Oct 18th, 2024
  • Oct 11th, 2024
  • Oct 4th, 2024
  • Sep 27th, 2024
  • Sep 20th, 2024
  • Sep 13th, 2024
  • Aug 16th, 2024
  • Aug 9th, 2024
  • Aug 2nd, 2024
  • Jul 26th, 2024
  • Jul 12th, 2024
  • Jun 28th, 2024
  • Jun 14th, 2024
  • May 31st, 2024
  • May 17th, 2024
  • May 10th, 2024
  • Apr 26th, 2024
  • Apr 19th, 2024
  • Apr 12th, 2024
  • Apr 5th, 2024
  • Mar 25th, 2024
  • Mar 18th, 2024
  • Mar 11th, 2024
  • Mar 4th, 2024
  • Feb 26th, 2024
  • Feb 19th, 2024
  • Feb 12th, 2024
  • Feb 5th, 2024
  • Jan 29th, 2024
  • Jan 22nd, 2024
  • Jan 15th, 2024
  • LLM Documentation
    • Rememberizer LLM Ready Documentation
Powered by GitBook
On this page
  • Enterprise Integration Overview
  • Architectural Patterns for Enterprise Integration
  • 1. Multi-Tenant Knowledge Management
  • 2. Integration Hub Architecture
  • 3. Microservices Architecture
  • Enterprise Security Patterns
  • Authentication & Authorization
  • Zero Trust Security Model
  • Scalability Patterns
  • Batch Processing for Document Ingestion
  • High-Volume Search Operations
  • Team-Based Knowledge Management
  • Team Roles and Permissions
  • Implementing Team-Based Knowledge Sharing
  • Enterprise Integration Best Practices
  • 1. Implement Robust Error Handling
  • 2. Implement Caching for Frequently Accessed Knowledge
  • 3. Implement Asynchronous Processing for Document Uploads
  • 4. Implement Proper Rate Limiting
  • Compliance Considerations
  • Data Residency
  • Audit Logging
  • Next Steps
  • Related Resources
  1. Enterprise Integration

Enterprise Integration Patterns

Architectural patterns, security considerations, and best practices for enterprise integrations with Rememberizer

This guide provides comprehensive information for organizations looking to integrate Rememberizer's knowledge management and semantic search capabilities into enterprise environments. It covers architectural patterns, security considerations, scalability, and best practices.

Enterprise Integration Overview

Rememberizer offers robust enterprise integration capabilities that extend beyond basic API usage, allowing organizations to build sophisticated knowledge management systems that:

  • Scale to meet organizational needs across departments and teams

  • Maintain security and compliance with enterprise requirements

  • Integrate with existing systems and workflow tools

  • Enable team-based access control and knowledge sharing

  • Support high-volume batch operations for document processing

Architectural Patterns for Enterprise Integration

1. Multi-Tenant Knowledge Management

Organizations can implement a multi-tenant architecture to organize knowledge by teams, departments, or functions:

                  ┌───────────────┐
                  │   Rememberizer│
                  │     Platform  │
                  └───────┬───────┘
                          │
        ┌─────────────────┼─────────────────┐
        │                 │                 │
┌───────▼────────┐ ┌──────▼───────┐ ┌───────▼────────┐
│  Engineering   │ │    Sales     │ │     Legal      │
│  Knowledge Base│ │ Knowledge Base│ │ Knowledge Base │
└───────┬────────┘ └──────┬───────┘ └───────┬────────┘
        │                 │                 │
        │                 │                 │
┌───────▼────────┐ ┌──────▼───────┐ ┌───────▼────────┐
│  Team-specific │ │ Team-specific│ │  Team-specific  │
│    Mementos    │ │   Mementos   │ │     Mementos    │
└────────────────┘ └──────────────┘ └─────────────────┘

Implementation Steps:

  1. Create separate vector stores for each department or major knowledge domain

  2. Configure team-based access control using Rememberizer's team functionality

  3. Define mementos to control access to specific knowledge subsets

  4. Implement role-based permissions for knowledge administrators and consumers

2. Integration Hub Architecture

For enterprises with existing systems, the hub-and-spoke pattern allows Rememberizer to act as a central knowledge repository:

       ┌─────────────┐               ┌─────────────┐
       │ CRM System  │               │  ERP System │
       └──────┬──────┘               └──────┬──────┘
              │                             │
              │                             │
              ▼                             ▼
       ┌──────────────────────────────────────────┐
       │                                          │
       │           Enterprise Service Bus         │
       │                                          │
       └────────────────────┬─────────────────────┘
                            │
                            ▼
                  ┌───────────────────┐
                  │   Rememberizer    │
                  │ Knowledge Platform│
                  └─────────┬─────────┘
                            │
          ┌─────────────────┴────────────────┐
          │                                  │
┌─────────▼──────────┐            ┌──────────▼────────┐
│ Internal Knowledge │            │ Customer Knowledge │
│      Base          │            │       Base         │
└────────────────────┘            └─────────────────────┘

Implementation Steps:

  1. Create and configure API keys for system-to-system integration

  2. Implement OAuth2 for user-based access to knowledge repositories

  3. Set up ETL processes for regular knowledge synchronization

  4. Use webhooks to notify external systems of knowledge updates

3. Microservices Architecture

For organizations adopting microservices, integrate Rememberizer as a specialized knowledge service:

┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐
│ User Service│  │ Auth Service│  │ Data Service│  │ Search UI   │
└──────┬──────┘  └──────┬──────┘  └──────┬──────┘  └──────┬──────┘
       │                │                │                │
       └────────────────┼────────────────┼────────────────┘
                        │                │                  
                        ▼                ▼                  
               ┌─────────────────────────────────┐         
               │       API Gateway              │         
               └─────────────────┬─────────────┘         
                                 │                        
                                 ▼                        
                       ┌───────────────────┐              
                       │   Rememberizer    │              
                       │   Knowledge API   │              
                       └───────────────────┘              

Implementation Steps:

  1. Create dedicated service accounts for microservices integration

  2. Implement JWT token-based authentication for service-to-service communication

  3. Design idempotent API interactions for resilience

  4. Implement circuit breakers for fault tolerance

Enterprise Security Patterns

Authentication & Authorization

Rememberizer supports multiple authentication methods suitable for enterprise environments:

1. OAuth2 Integration

For user-based access, implement the OAuth2 authorization flow:

// Step 1: Redirect users to Rememberizer authorization endpoint
function redirectToAuth() {
  const authUrl = 'https://api.rememberizer.ai/oauth/authorize/';
  const params = new URLSearchParams({
    client_id: 'YOUR_CLIENT_ID',
    redirect_uri: 'YOUR_REDIRECT_URI',
    response_type: 'code',
    scope: 'read write'
  });
  
  window.location.href = `${authUrl}?${params.toString()}`;
}

// Step 2: Exchange authorization code for tokens
async function exchangeCodeForTokens(code) {
  const tokenUrl = 'https://api.rememberizer.ai/oauth/token/';
  const response = await fetch(tokenUrl, {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json'
    },
    body: JSON.stringify({
      client_id: 'YOUR_CLIENT_ID',
      client_secret: 'YOUR_CLIENT_SECRET',
      grant_type: 'authorization_code',
      code: code,
      redirect_uri: 'YOUR_REDIRECT_URI'
    })
  });
  
  return response.json();
}

2. Service Account Authentication

For system-to-system integration, use API key authentication:

import requests

def search_knowledge_base(query, api_key):
    headers = {
        'X-API-Key': api_key,
        'Content-Type': 'application/json'
    }
    
    payload = {
        'query': query,
        'num_results': 10
    }
    
    response = requests.post(
        'https://api.rememberizer.ai/api/v1/search/',
        headers=headers,
        json=payload
    )
    
    return response.json()

3. SAML and Enterprise SSO

For enterprise single sign-on integration:

  1. Configure your identity provider (Okta, Azure AD, etc.) to recognize Rememberizer as a service provider

  2. Set up SAML attribute mapping to match Rememberizer user attributes

  3. Configure Rememberizer to delegate authentication to your identity provider

Zero Trust Security Model

Implement a zero trust approach with Rememberizer by:

  1. Micro-segmentation: Create separate knowledge bases with distinct access controls

  2. Continuous Verification: Implement short-lived tokens and regular reauthentication

  3. Least Privilege: Define fine-grained mementos that limit access to specific knowledge subsets

  4. Event Logging: Monitor and audit all access to sensitive knowledge

Scalability Patterns

Batch Processing for Document Ingestion

For large-scale document ingestion, implement the batch upload pattern:

import requests
import time
from concurrent.futures import ThreadPoolExecutor

def batch_upload_documents(files, api_key, batch_size=5):
    """
    Upload documents in batches to avoid rate limits
    
    Args:
        files: List of file paths to upload
        api_key: Rememberizer API key
        batch_size: Number of concurrent uploads
    """
    headers = {
        'X-API-Key': api_key
    }
    
    results = []
    
    # Process files in batches
    with ThreadPoolExecutor(max_workers=batch_size) as executor:
        for i in range(0, len(files), batch_size):
            batch = files[i:i+batch_size]
            futures = []
            
            # Submit batch of uploads
            for file_path in batch:
                with open(file_path, 'rb') as f:
                    files = {'file': f}
                    future = executor.submit(
                        requests.post,
                        'https://api.rememberizer.ai/api/v1/documents/upload/',
                        headers=headers,
                        files=files
                    )
                    futures.append(future)
            
            # Collect results
            for future in futures:
                response = future.result()
                results.append(response.json())
            
            # Rate limiting - pause between batches
            if i + batch_size < len(files):
                time.sleep(1)
    
    return results

High-Volume Search Operations

For applications requiring high-volume search:

async function batchSearchWithRateLimit(queries, apiKey, options = {}) {
  const {
    batchSize = 5,
    delayBetweenBatches = 1000,
    maxRetries = 3,
    retryDelay = 2000
  } = options;
  
  const results = [];
  
  // Process queries in batches
  for (let i = 0; i < queries.length; i += batchSize) {
    const batch = queries.slice(i, i + batchSize);
    const batchPromises = batch.map(query => searchWithRetry(query, apiKey, maxRetries, retryDelay));
    
    // Execute batch
    const batchResults = await Promise.all(batchPromises);
    results.push(...batchResults);
    
    // Apply rate limiting between batches
    if (i + batchSize < queries.length) {
      await new Promise(resolve => setTimeout(resolve, delayBetweenBatches));
    }
  }
  
  return results;
}

async function searchWithRetry(query, apiKey, maxRetries, retryDelay) {
  let retries = 0;
  
  while (retries < maxRetries) {
    try {
      const response = await fetch('https://api.rememberizer.ai/api/v1/search/', {
        method: 'POST',
        headers: {
          'X-API-Key': apiKey,
          'Content-Type': 'application/json'
        },
        body: JSON.stringify({ query })
      });
      
      if (response.ok) {
        return response.json();
      }
      
      // Handle rate limiting specifically
      if (response.status === 429) {
        const retryAfter = response.headers.get('Retry-After') || retryDelay / 1000;
        await new Promise(resolve => setTimeout(resolve, retryAfter * 1000));
        retries++;
        continue;
      }
      
      // Other errors
      throw new Error(`Search failed with status: ${response.status}`);
    } catch (error) {
      retries++;
      if (retries >= maxRetries) {
        throw error;
      }
      await new Promise(resolve => setTimeout(resolve, retryDelay));
    }
  }
}

Team-Based Knowledge Management

Rememberizer supports team-based knowledge management, enabling enterprises to:

  1. Create team workspaces: Organize knowledge by department or function

  2. Assign role-based permissions: Control who can view, edit, or administer knowledge

  3. Share knowledge across teams: Configure cross-team access to specific knowledge bases

Team Roles and Permissions

Rememberizer supports the following team roles:

Role
Capabilities

Owner

Full administrative access, can manage team members and all knowledge

Admin

Can manage knowledge and configure mementos, but cannot manage the team itself

Member

Can view and search knowledge according to memento permissions

Implementing Team-Based Knowledge Sharing

import requests

def create_team_knowledge_base(team_id, name, description, api_key):
    """
    Create a knowledge base for a specific team
    """
    headers = {
        'X-API-Key': api_key,
        'Content-Type': 'application/json'
    }
    
    payload = {
        'team_id': team_id,
        'name': name,
        'description': description
    }
    
    response = requests.post(
        'https://api.rememberizer.ai/api/v1/teams/knowledge/',
        headers=headers,
        json=payload
    )
    
    return response.json()

def grant_team_access(knowledge_id, team_id, permission_level, api_key):
    """
    Grant a team access to a knowledge base
    
    Args:
        knowledge_id: ID of the knowledge base
        team_id: ID of the team to grant access
        permission_level: 'read', 'write', or 'admin'
        api_key: Rememberizer API key
    """
    headers = {
        'X-API-Key': api_key,
        'Content-Type': 'application/json'
    }
    
    payload = {
        'team_id': team_id,
        'knowledge_id': knowledge_id,
        'permission': permission_level
    }
    
    response = requests.post(
        'https://api.rememberizer.ai/api/v1/knowledge/permissions/',
        headers=headers,
        json=payload
    )
    
    return response.json()

Enterprise Integration Best Practices

1. Implement Robust Error Handling

Design your integration to handle various error scenarios gracefully:

async function robustApiCall(endpoint, method, payload, apiKey) {
  try {
    const response = await fetch(`https://api.rememberizer.ai/api/v1/${endpoint}`, {
      method,
      headers: {
        'X-API-Key': apiKey,
        'Content-Type': 'application/json'
      },
      body: method !== 'GET' ? JSON.stringify(payload) : undefined
    });
    
    // Handle different response types
    if (response.status === 204) {
      return { success: true };
    }
    
    if (!response.ok) {
      const error = await response.json();
      throw new Error(error.message || `API call failed with status: ${response.status}`);
    }
    
    return await response.json();
  } catch (error) {
    // Log error details for troubleshooting
    console.error(`API call to ${endpoint} failed:`, error);
    
    // Provide meaningful error to calling code
    throw new Error(`Failed to ${method} ${endpoint}: ${error.message}`);
  }
}

2. Implement Caching for Frequently Accessed Knowledge

Reduce API load and improve performance with appropriate caching:

import requests
import time
from functools import lru_cache

# Cache frequently accessed documents for 10 minutes
@lru_cache(maxsize=100)
def get_document_with_cache(document_id, api_key, timestamp=None):
    """
    Get a document with caching
    
    Args:
        document_id: ID of the document to retrieve
        api_key: Rememberizer API key
        timestamp: Cache invalidation timestamp (default: 10 min chunks)
    """
    # Generate a timestamp that changes every 10 minutes for cache invalidation
    if timestamp is None:
        timestamp = int(time.time() / 600)
    
    headers = {
        'X-API-Key': api_key
    }
    
    response = requests.get(
        f'https://api.rememberizer.ai/api/v1/documents/{document_id}/',
        headers=headers
    )
    
    return response.json()

3. Implement Asynchronous Processing for Document Uploads

For large document sets, implement asynchronous processing:

async function uploadLargeDocument(file, apiKey) {
  // Step 1: Initiate upload
  const initResponse = await fetch('https://api.rememberizer.ai/api/v1/documents/upload-async/', {
    method: 'POST',
    headers: {
      'X-API-Key': apiKey,
      'Content-Type': 'application/json'
    },
    body: JSON.stringify({
      filename: file.name,
      filesize: file.size,
      content_type: file.type
    })
  });
  
  const { upload_id, upload_url } = await initResponse.json();
  
  // Step 2: Upload file to the provided URL
  await fetch(upload_url, {
    method: 'PUT',
    body: file
  });
  
  // Step 3: Monitor processing status
  const processingId = await initiateProcessing(upload_id, apiKey);
  return monitorProcessingStatus(processingId, apiKey);
}

async function initiateProcessing(uploadId, apiKey) {
  const response = await fetch('https://api.rememberizer.ai/api/v1/documents/process/', {
    method: 'POST',
    headers: {
      'X-API-Key': apiKey,
      'Content-Type': 'application/json'
    },
    body: JSON.stringify({
      upload_id: uploadId
    })
  });
  
  const { processing_id } = await response.json();
  return processing_id;
}

async function monitorProcessingStatus(processingId, apiKey, interval = 2000) {
  while (true) {
    const statusResponse = await fetch(`https://api.rememberizer.ai/api/v1/documents/process-status/${processingId}/`, {
      headers: {
        'X-API-Key': apiKey
      }
    });
    
    const status = await statusResponse.json();
    
    if (status.status === 'completed') {
      return status.document_id;
    } else if (status.status === 'failed') {
      throw new Error(`Processing failed: ${status.error}`);
    }
    
    // Wait before checking again
    await new Promise(resolve => setTimeout(resolve, interval));
  }
}

4. Implement Proper Rate Limiting

Respect API rate limits to ensure reliable operation:

import requests
import time
from functools import wraps

class RateLimiter:
    def __init__(self, calls_per_second=5):
        self.calls_per_second = calls_per_second
        self.last_call_time = 0
        self.min_interval = 1.0 / calls_per_second
    
    def __call__(self, func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            current_time = time.time()
            time_since_last_call = current_time - self.last_call_time
            
            if time_since_last_call < self.min_interval:
                sleep_time = self.min_interval - time_since_last_call
                time.sleep(sleep_time)
            
            self.last_call_time = time.time()
            return func(*args, **kwargs)
        
        return wrapper

# Apply rate limiting to API calls
@RateLimiter(calls_per_second=5)
def search_documents(query, api_key):
    headers = {
        'X-API-Key': api_key,
        'Content-Type': 'application/json'
    }
    
    payload = {
        'query': query
    }
    
    response = requests.post(
        'https://api.rememberizer.ai/api/v1/search/',
        headers=headers,
        json=payload
    )
    
    return response.json()

Compliance Considerations

Data Residency

For organizations with data residency requirements:

  1. Choose appropriate region: Select Rememberizer deployments in compliant regions

  2. Document data flows: Map where knowledge is stored and processed

  3. Implement filtering: Use mementos to restrict sensitive data access

Audit Logging

Implement comprehensive audit logging for compliance:

import requests
import json
import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s] %(message)s',
    handlers=[
        logging.FileHandler('rememberizer_audit.log'),
        logging.StreamHandler()
    ]
)

def audit_log_api_call(endpoint, method, user_id, result_status):
    """
    Log API call details for audit purposes
    """
    log_entry = {
        'timestamp': time.time(),
        'endpoint': endpoint,
        'method': method,
        'user_id': user_id,
        'status': result_status
    }
    
    logging.info(f"API CALL: {json.dumps(log_entry)}")

def search_with_audit(query, api_key, user_id):
    endpoint = 'search'
    method = 'POST'
    
    try:
        headers = {
            'X-API-Key': api_key,
            'Content-Type': 'application/json'
        }
        
        payload = {
            'query': query
        }
        
        response = requests.post(
            'https://api.rememberizer.ai/api/v1/search/',
            headers=headers,
            json=payload
        )
        
        status = 'success' if response.ok else 'error'
        audit_log_api_call(endpoint, method, user_id, status)
        
        return response.json()
    except Exception as e:
        audit_log_api_call(endpoint, method, user_id, 'exception')
        raise

Next Steps

To implement enterprise integrations with Rememberizer:

  1. Design your knowledge architecture: Map out knowledge domains and access patterns

  2. Set up role-based team structures: Create teams and assign appropriate permissions

  3. Implement authentication flows: Choose and implement the authentication methods that meet your requirements

  4. Design scalable workflows: Implement batch processing for document ingestion

  5. Establish monitoring and audit policies: Set up logging and monitoring for compliance and operations

Related Resources

For additional assistance with enterprise integrations, contact the Rememberizer team through the Support portal.

PreviousTalk-to-Slack the Sample Web AppNextAPI Documentation Home

Last updated 1 month ago

- Control which data sources are available to integrations

- Complete API reference for all endpoints

- Programmatic integration with the LangChain framework

- Integration with OpenAI's GPT platform

- Technical details of Rememberizer's vector database implementation

Mementos Filter Access
API Documentation
LangChain Integration
Creating a Rememberizer GPT
Vector Stores