Rememberizer Docs
Sign inSign upContact us
English
English
  • Why Rememberizer?
  • Background
    • What are Vector Embeddings and Vector Databases?
    • Glossary
    • Standardized Terminology
  • Personal Use
    • Getting Started
      • Search your knowledge
      • Mementos Filter Access
      • Common knowledge
      • Manage your embedded knowledge
  • Integrations
    • Rememberizer App
    • Rememberizer Slack integration
    • Rememberizer Google Drive integration
    • Rememberizer Dropbox integration
    • Rememberizer Gmail integration
    • Rememberizer Memory integration
    • Rememberizer MCP Servers
    • Manage third-party apps
  • Developer Resources
    • Developer Overview
  • Integration Options
    • Registering and using API Keys
    • Registering Rememberizer apps
    • Authorizing Rememberizer apps
    • Creating a Rememberizer GPT
    • LangChain integration
    • Vector Stores
    • Talk-to-Slack the Sample Web App
  • Enterprise Integration
    • Enterprise Integration Patterns
  • API Reference
    • API Documentation Home
    • Authentication
  • Core APIs
    • Search for documents by semantic similarity
    • Retrieve documents
    • Retrieve document contents
    • Retrieve Slack content
    • Memorize content to Rememberizer
  • Account & Configuration
    • Retrieve current user account details
    • List available data source integrations
    • Mementos
    • Get all added public knowledge
  • Vector Store APIs
    • Vector Store Documentation
    • Get vector store information
    • Get a list of documents in a Vector Store
    • Get document information
    • Add new text document to a Vector Store
    • Upload files to a Vector Store
    • Update file content in a Vector Store
    • Remove a document in Vector Store
    • Search for Vector Store documents by semantic similarity
  • Additional Resources
    • Notices
      • Terms of Use
      • Privacy Policy
      • B2B
        • About Reddit Agent
  • Releases
    • Release Notes Home
  • 2025 Releases
    • Apr 25th, 2025
    • Apr 18th, 2025
    • Apr 11th, 2025
    • Apr 4th, 2025
    • Mar 28th, 2025
    • Mar 21st, 2025
    • Mar 14th, 2025
    • Jan 17th, 2025
  • 2024 Releases
    • Dec 27th, 2024
    • Dec 20th, 2024
    • Dec 13th, 2024
    • Dec 6th, 2024
  • Nov 29th, 2024
  • Nov 22nd, 2024
  • Nov 15th, 2024
  • Nov 8th, 2024
  • Nov 1st, 2024
  • Oct 25th, 2024
  • Oct 18th, 2024
  • Oct 11th, 2024
  • Oct 4th, 2024
  • Sep 27th, 2024
  • Sep 20th, 2024
  • Sep 13th, 2024
  • Aug 16th, 2024
  • Aug 9th, 2024
  • Aug 2nd, 2024
  • Jul 26th, 2024
  • Jul 12th, 2024
  • Jun 28th, 2024
  • Jun 14th, 2024
  • May 31st, 2024
  • May 17th, 2024
  • May 10th, 2024
  • Apr 26th, 2024
  • Apr 19th, 2024
  • Apr 12th, 2024
  • Apr 5th, 2024
  • Mar 25th, 2024
  • Mar 18th, 2024
  • Mar 11th, 2024
  • Mar 4th, 2024
  • Feb 26th, 2024
  • Feb 19th, 2024
  • Feb 12th, 2024
  • Feb 5th, 2024
  • Jan 29th, 2024
  • Jan 22nd, 2024
  • Jan 15th, 2024
  • LLM Documentation
    • Rememberizer LLM Ready Documentation
Powered by GitBook
On this page
  • Available Vector Store Endpoints
  • Management Endpoints
  • Document Operations
  • Search Operations
  • Creating a Vector Store
  • Request Body
  • Response
  • Vector Store Configurations
  • Authentication
  1. Vector Store APIs

Vector Store Documentation

PreviousGet all added public knowledgeNextGet vector store information

Last updated 1 month ago

The Vector Store APIs allow you to create, manage, and search vector stores in Rememberizer. Vector stores enable you to store and retrieve documents using semantic similarity search.

Available Vector Store Endpoints

Management Endpoints

  • Get the information of a document

Document Operations

  • Upload files to a Vector Store

  • Update file's content in a Vector Store

Search Operations

  • Search for Vector Store documents by semantic similarity

Creating a Vector Store

To create a new Vector Store, use the following endpoint:

POST /api/v1/vector-stores/

Request Body

{
  "name": "Store name",
  "description": "Store description",
  "embedding_model": "sentence-transformers/all-mpnet-base-v2",
  "indexing_algorithm": "ivfflat",
  "vector_dimension": 128,
  "search_metric": "cosine_distance"
}

Response

{
  "id": "store_id",
  "name": "Vector Store Name",
  "description": "Store description",
  "created": "2023-05-01T00:00:00Z",
  "modified": "2023-05-01T00:00:00Z"
}

Vector Store Configurations

To retrieve available configurations for vector stores, use:

GET /api/v1/vector-stores/configs

This will return available embedding models, indexing algorithms, and search metrics that can be used when creating or configuring vector stores.

Authentication

All Vector Store endpoints require authentication using either:

  • JWT token for management operations

  • API key for document and search operations

Get vector store's information
Get a list of documents in a Vector Store
Add new text document to a Vector Store
Remove a document in Vector Store