Rememberizer Docs
Sign inSign upContact us
English
English
  • Why Rememberizer?
  • Background
    • What are Vector Embeddings and Vector Databases?
    • Glossary
    • Standardized Terminology
  • Personal Use
    • Getting Started
      • Search your knowledge
      • Mementos Filter Access
      • Common knowledge
      • Manage your embedded knowledge
  • Integrations
    • Rememberizer App
    • Rememberizer Slack integration
    • Rememberizer Google Drive integration
    • Rememberizer Dropbox integration
    • Rememberizer Gmail integration
    • Rememberizer Memory integration
    • Rememberizer MCP Servers
    • Manage third-party apps
  • Developer Resources
    • Developer Overview
  • Integration Options
    • Registering and using API Keys
    • Registering Rememberizer apps
    • Authorizing Rememberizer apps
    • Creating a Rememberizer GPT
    • LangChain integration
    • Vector Stores
    • Talk-to-Slack the Sample Web App
  • Enterprise Integration
    • Enterprise Integration Patterns
  • API Reference
    • API Documentation Home
    • Authentication
  • Core APIs
    • Search for documents by semantic similarity
    • Retrieve documents
    • Retrieve document contents
    • Retrieve Slack content
    • Memorize content to Rememberizer
  • Account & Configuration
    • Retrieve current user account details
    • List available data source integrations
    • Mementos
    • Get all added public knowledge
  • Vector Store APIs
    • Vector Store Documentation
    • Get vector store information
    • Get a list of documents in a Vector Store
    • Get document information
    • Add new text document to a Vector Store
    • Upload files to a Vector Store
    • Update file content in a Vector Store
    • Remove a document in Vector Store
    • Search for Vector Store documents by semantic similarity
  • Additional Resources
    • Notices
      • Terms of Use
      • Privacy Policy
      • B2B
        • About Reddit Agent
  • Releases
    • Release Notes Home
  • 2025 Releases
    • Apr 25th, 2025
    • Apr 18th, 2025
    • Apr 11th, 2025
    • Apr 4th, 2025
    • Mar 28th, 2025
    • Mar 21st, 2025
    • Mar 14th, 2025
    • Jan 17th, 2025
  • 2024 Releases
    • Dec 27th, 2024
    • Dec 20th, 2024
    • Dec 13th, 2024
    • Dec 6th, 2024
  • Nov 29th, 2024
  • Nov 22nd, 2024
  • Nov 15th, 2024
  • Nov 8th, 2024
  • Nov 1st, 2024
  • Oct 25th, 2024
  • Oct 18th, 2024
  • Oct 11th, 2024
  • Oct 4th, 2024
  • Sep 27th, 2024
  • Sep 20th, 2024
  • Sep 13th, 2024
  • Aug 16th, 2024
  • Aug 9th, 2024
  • Aug 2nd, 2024
  • Jul 26th, 2024
  • Jul 12th, 2024
  • Jun 28th, 2024
  • Jun 14th, 2024
  • May 31st, 2024
  • May 17th, 2024
  • May 10th, 2024
  • Apr 26th, 2024
  • Apr 19th, 2024
  • Apr 12th, 2024
  • Apr 5th, 2024
  • Mar 25th, 2024
  • Mar 18th, 2024
  • Mar 11th, 2024
  • Mar 4th, 2024
  • Feb 26th, 2024
  • Feb 19th, 2024
  • Feb 12th, 2024
  • Feb 5th, 2024
  • Jan 29th, 2024
  • Jan 22nd, 2024
  • Jan 15th, 2024
  • LLM Documentation
    • Rememberizer LLM Ready Documentation
Powered by GitBook
On this page
  1. Vector Store APIs

Get a list of documents in a Vector Store

PreviousGet vector store informationNextGet document information

Last updated 1 month ago

Example Requests

curl -X GET \
  https://api.rememberizer.ai/api/v1/vector-stores/vs_abc123/documents \
  -H "x-api-key: YOUR_API_KEY"

Replace YOUR_API_KEY with your actual Vector Store API key and vs_abc123 with your Vector Store ID.

const getVectorStoreDocuments = async (vectorStoreId) => {
  const response = await fetch(`https://api.rememberizer.ai/api/v1/vector-stores/${vectorStoreId}/documents`, {
    method: 'GET',
    headers: {
      'x-api-key': 'YOUR_API_KEY'
    }
  });
  
  const data = await response.json();
  console.log(data);
};

getVectorStoreDocuments('vs_abc123');

Replace YOUR_API_KEY with your actual Vector Store API key and vs_abc123 with your Vector Store ID.

import requests

def get_vector_store_documents(vector_store_id):
    headers = {
        "x-api-key": "YOUR_API_KEY"
    }
    
    response = requests.get(
        f"https://api.rememberizer.ai/api/v1/vector-stores/{vector_store_id}/documents",
        headers=headers
    )
    
    data = response.json()
    print(data)

get_vector_store_documents('vs_abc123')

Replace YOUR_API_KEY with your actual Vector Store API key and vs_abc123 with your Vector Store ID.

Path Parameters

Parameter
Type
Description

vector-store-id

string

Required. The ID of the vector store to list documents from.

Response Format

[
  {
    "id": 1234,
    "name": "Product Manual.pdf",
    "type": "application/pdf",
    "vector_store": "vs_abc123",
    "size": 250000,
    "status": "indexed",
    "processing_status": "completed",
    "indexed_on": "2023-06-15T10:30:00Z",
    "status_error_message": null,
    "created": "2023-06-15T10:15:00Z",
    "modified": "2023-06-15T10:30:00Z"
  },
  {
    "id": 1235,
    "name": "Technical Specifications.docx",
    "type": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
    "vector_store": "vs_abc123",
    "size": 125000,
    "status": "indexed",
    "processing_status": "completed",
    "indexed_on": "2023-06-15T11:45:00Z",
    "status_error_message": null,
    "created": "2023-06-15T11:30:00Z",
    "modified": "2023-06-15T11:45:00Z"
  }
]

Authentication

This endpoint requires authentication using an API key in the x-api-key header.

Error Responses

Status Code
Description

401

Unauthorized - Invalid or missing API key

404

Not Found - Vector Store not found

500

Internal Server Error

This endpoint retrieves a list of all documents stored in the specified vector store. It provides metadata about each document, including the document's processing status, size, and indexed timestamp. This information is useful for monitoring your vector store's contents and checking document processing status.

get

List all documents in a vector store.

Path parameters
vector-store-idstringRequired

The ID of the vector store.

Header parameters
x-api-keystringRequired

The API key for authentication.

Responses
200
A list of documents.
application/json
get
GET /api/v1/vector-stores/{vector-store-id}/documents HTTP/1.1
Host: api.rememberizer.ai
x-api-key: text
Accept: */*
200

A list of documents.

[
  {
    "id": 1,
    "name": "text",
    "type": "text",
    "vector_store": "text",
    "size": 1,
    "status": "text",
    "processing_status": "text",
    "indexed_on": "2025-05-16T17:19:02.920Z",
    "status_error_message": "text",
    "created": "2025-05-16T17:19:02.920Z",
    "modified": "2025-05-16T17:19:02.920Z"
  }
]
  • GET/vector-stores/{vector-store-id}/documents
  • Example Requests
  • Path Parameters
  • Response Format
  • Authentication
  • Error Responses