按语义相似性搜索向量存储文档
通过语义相似性和批量操作搜索向量存储文档
get
Initiate a search operation with a query text and receive most semantically similar responses from the vector store.
Path parameters
vector-store-idstringRequired
The ID of the vector store.
Query parameters
qstringRequired
The search query text.
nintegerOptional
Number of chunks to return.
tnumberOptional
Matching threshold.
prev_chunksintegerOptional
Number of chunks before the matched chunk to include.
next_chunksintegerOptional
Number of chunks after the matched chunk to include.
Header parameters
x-api-keystringRequired
The API key for authentication.
Responses
200
Search results retrieved successfully.
application/json
get
/vector-stores/{vector-store-id}/documents/search200
Search results retrieved successfully.
示例请求
curl -X GET \
"https://api.rememberizer.ai/api/v1/vector-stores/vs_abc123/documents/search?q=如何将我们的产品与第三方系统集成&n=5&prev_chunks=1&next_chunks=1" \
-H "x-api-key: YOUR_API_KEY"const searchVectorStore = async (vectorStoreId, query, numResults = 5, prevChunks = 1, nextChunks = 1) => {
const url = new URL(`https://api.rememberizer.ai/api/v1/vector-stores/${vectorStoreId}/documents/search`);
url.searchParams.append('q', query);
url.searchParams.append('n', numResults);
url.searchParams.append('prev_chunks', prevChunks);
url.searchParams.append('next_chunks', nextChunks);
const response = await fetch(url.toString(), {
method: 'GET',
headers: {
'x-api-key': 'YOUR_API_KEY'
}
});
const data = await response.json();
console.log(data);
};
searchVectorStore(
'vs_abc123',
'如何将我们的产品与第三方系统集成',
5,
1,
1
);路径参数
参数
类型
描述
查询参数
参数
类型
描述
响应格式
认证
错误响应
状态码
描述
搜索优化技巧
上下文窗口
匹配阈值
批量操作
批量搜索实现
批量操作的性能优化
Last updated