Rememberizer Docs
anmeldenMelden Sie sich anKontaktiere uns
Deutsch
Deutsch
  • Warum Rememberizer?
  • Hintergrund
    • Was sind Vektor-Embeddings und Vektor-Datenbanken?
    • Glossar
    • Standardisierte Terminologie
  • Persönliche Nutzung
    • Erste Schritte
      • Durchsuche dein Wissen
      • Zugriff auf Mementos-Filter
      • Allgemeines Wissen
      • Verwalte dein eingebettetes Wissen
  • Integrationen
    • Rememberizer App
    • Rememberizer Slack-Integration
    • Rememberizer Google Drive-Integration
    • Rememberizer Dropbox-Integration
    • Rememberizer Gmail-Integration
    • Rememberizer Memory-Integration
    • Rememberizer MCP-Server
    • Drittanbieter-Apps verwalten
  • Entwicklerressourcen
    • Entwicklerübersicht
  • Integrationsoptionen
    • Registrierung und Verwendung von API-Schlüsseln
    • Registrierung von Rememberizer-Apps
    • Autorisierung von Rememberizer-Apps
    • Erstellung eines Rememberizer GPT
    • LangChain-Integration
    • Vektor-Speicher
    • Talk-to-Slack die Beispiel-Webanwendung
  • Unternehmensintegration
    • Muster der Unternehmensintegration
  • API-Referenz
    • API-Dokumentation Startseite
    • Authentifizierung
  • Kern-APIs
    • Dokumente nach semantischer Ähnlichkeit suchen
    • Dokumente abrufen
    • Inhalte von Dokumenten abrufen
    • Slack-Inhalte abrufen
    • Inhalte an Rememberizer merken
  • Konto & Konfiguration
    • Aktuelle Kontodetails des Benutzers abrufen
    • Verfügbare Datenquellenintegrationen auflisten
    • Mementos
    • Alle hinzugefügten öffentlichen Kenntnisse abrufen
  • Vektor-Speicher-APIs
    • Dokumentation zum Vektor-Speicher
    • Vektor-Speicherinformationen abrufen
    • Liste der Dokumente in einem Vektor-Speicher abrufen
    • Dokumentinformationen abrufen
    • Neues Textdokument zu einem Vektor-Speicher hinzufügen
    • Dateien in einen Vektor-Speicher hochladen
    • Dateiinhalte in einem Vektor-Speicher aktualisieren
    • Ein Dokument im Vektor-Speicher entfernen
    • Nach Dokumenten im Vektor-Speicher anhand semantischer Ähnlichkeit suchen
  • Zusätzliche Ressourcen
    • Hinweise
      • Nutzungsbedingungen
      • Datenschutzrichtlinie
      • B2B
        • Über Reddit Agent
  • Veröffentlichungen
    • Versionshinweise Startseite
  • 2025 Veröffentlichungen
    • 25. Apr 2025
    • 18. Apr 2025
    • 11. Apr 2025
    • 4. Apr 2025
    • 28. Mär 2025
    • 21. Mär 2025
    • 14. Mär 2025
    • 17. Jan 2025
  • 2024 Veröffentlichungen
    • 27. Dez 2024
    • 20. Dez 2024
    • 13. Dez 2024
    • 6. Dez 2024
  • 29. Nov 2024
  • 22. Nov 2024
  • 15. Nov 2024
  • 8. Nov 2024
  • 1. Nov 2024
  • 25. Okt 2024
  • 18. Okt 2024
  • 11. Okt 2024
  • 4. Okt 2024
  • 27. Sep 2024
  • 20. Sep 2024
  • 13. Sep 2024
  • 16. Aug 2024
  • 9. Aug 2024
  • 2. Aug 2024
  • 26. Juli 2024
  • 12. Juli 2024
  • 28. Juni 2024
  • 14. Juni 2024
  • 31. Mai 2024
  • 17. Mai 2024
  • 10. Mai 2024
  • 26. Apr 2024
  • 19. Apr 2024
  • 12. Apr 2024
  • 5. Apr 2024
  • 25. März 2024
  • 18. März 2024
  • 11. März 2024
  • 4. März 2024
  • 26. Feb 2024
  • 19. Feb 2024
  • 12. Feb 2024
  • 5. Feb 2024
  • 29. Jan 2024
  • 22. Jan 2024
  • 15. Jan 2024
  • LLM-Dokumentation
    • Rememberizer LLM Bereit Dokumentation
Powered by GitBook
On this page
  1. Kern-APIs

Inhalte von Dokumenten abrufen

PreviousDokumente abrufenNextSlack-Inhalte abrufen

Last updated 29 days ago

Beispielanfragen

curl -X GET \
  "https://api.rememberizer.ai/api/v1/documents/12345/contents/?start_chunk=0&end_chunk=20" \
  -H "Authorization: Bearer YOUR_JWT_TOKEN"

Ersetzen Sie YOUR_JWT_TOKEN durch Ihr tatsächliches JWT-Token und 12345 durch eine tatsächliche Dokument-ID.

const getDocumentContents = async (documentId, startChunk = 0, endChunk = 20) => {
  const url = new URL(`https://api.rememberizer.ai/api/v1/documents/${documentId}/contents/`);
  url.searchParams.append('start_chunk', startChunk);
  url.searchParams.append('end_chunk', endChunk);
  
  const response = await fetch(url.toString(), {
    method: 'GET',
    headers: {
      'Authorization': 'Bearer YOUR_JWT_TOKEN'
    }
  });
  
  const data = await response.json();
  console.log(data);
  
  // Wenn es weitere Chunks gibt, können Sie diese abrufen
  if (data.end_chunk < totalChunks) {
    // Abrufen des nächsten Satzes von Chunks
    await getDocumentContents(documentId, data.end_chunk, data.end_chunk + 20);
  }
};

getDocumentContents(12345);

Ersetzen Sie YOUR_JWT_TOKEN durch Ihr tatsächliches JWT-Token und 12345 durch eine tatsächliche Dokument-ID.

import requests

def get_document_contents(document_id, start_chunk=0, end_chunk=20):
    headers = {
        "Authorization": "Bearer YOUR_JWT_TOKEN"
    }
    
    params = {
        "start_chunk": start_chunk,
        "end_chunk": end_chunk
    }
    
    response = requests.get(
        f"https://api.rememberizer.ai/api/v1/documents/{document_id}/contents/",
        headers=headers,
        params=params
    )
    
    data = response.json()
    print(data)
    
    # Wenn es weitere Chunks gibt, können Sie diese abrufen
    # Dies ist ein einfaches Beispiel - Sie möchten möglicherweise eine ordnungsgemäße Rekursionsprüfung implementieren
    if 'end_chunk' in data and data['end_chunk'] < total_chunks:
        get_document_contents(document_id, data['end_chunk'], data['end_chunk'] + 20)

get_document_contents(12345)

Ersetzen Sie YOUR_JWT_TOKEN durch Ihr tatsächliches JWT-Token und 12345 durch eine tatsächliche Dokument-ID.

Pfadparameter

Parameter
Typ
Beschreibung

document_id

ganzzahlig

Erforderlich. Die ID des Dokuments, dessen Inhalte abgerufen werden sollen.

Abfrageparameter

Parameter
Typ
Beschreibung

start_chunk

ganzzahlig

Der Start-Chunk-Index. Standard ist 0.

end_chunk

ganzzahlig

Der End-Chunk-Index. Standard ist start_chunk + 20.

Antwortformat

{
  "content": "Der vollständige Textinhalt der Dokumentenabschnitte...",
  "end_chunk": 20
}

Fehlerantworten

Statuscode
Beschreibung

404

Dokument nicht gefunden

500

Interner Serverfehler

Paginierung für große Dokumente

Für große Dokumente wird der Inhalt in Abschnitte unterteilt. Sie können das vollständige Dokument abrufen, indem Sie mehrere Anfragen stellen:

  1. Stellen Sie eine erste Anfrage mit start_chunk=0

  2. Verwenden Sie den zurückgegebenen end_chunk-Wert als start_chunk für die nächste Anfrage

  3. Fahren Sie fort, bis Sie alle Abschnitte abgerufen haben

Dieser Endpunkt gibt den Rohtextinhalt eines Dokuments zurück, sodass Sie auf die vollständigen Informationen für eine detaillierte Verarbeitung oder Analyse zugreifen können.

Retrieve contents of a document by its ID.

get

Returns the content of the document with the specified ID, along with the index of the latest retrieved chunk. Each call fetches up to 20 chunks. To get more, use the end_chunk value from the response as the start_chunk for the next call.

Path parameters
document_idintegerRequired

The ID of the document to retrieve contents for.

Query parameters
start_chunkintegerOptional

Indicate the starting chunk that you want to retrieve. If not specified, the default value is 0.

end_chunkintegerOptional

Indicate the ending chunk that you want to retrieve. If not specified, the default value is start_chunk + 20.

Responses
200
Content of the document and index of the latest retrieved chunk.
application/json
404
Document not found.
500
Internal server error.
get
GET /api/v1/documents/{document_id}/contents/ HTTP/1.1
Host: api.rememberizer.ai
Accept: */*
{
  "content": "text",
  "end_chunk": 20
}
  • GETRetrieve contents of a document by its ID.
  • Beispielanfragen
  • Pfadparameter
  • Abfrageparameter
  • Antwortformat
  • Fehlerantworten
  • Paginierung für große Dokumente